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Abstract � This paper describes the ongoing research on 
Rough Sets based classifier applied to Induction Motors 
fault diagnosis through Motor Current Signature 
Analysis (MCSA). The results of mechanical failures 
detection and how a Rough Sets based classifier is used as 
a monitoring system using current signature analysis in 
predictive maintenance are described in this paper. 
 

I. INTRODUCTION 
 

Nowadays there is a great concern about the reliability of 
the productive process in order to reduce production costs 
and increase productivity in the industrial area. This fact 
makes maintenance techniques a very important issue. The 
highlights of the moment are predictive maintenance 
techniques. These techniques consist of using continuous 
monitoring systems. Their use is justified in the presence of 
failures, in general randomly, of complex equipment with a 
large amount of components. Such failures usually have 
serious economic or human consequences.  
 Since induction motors are often critical components in 
the industrial process, they deserve special attention from the 
plant maintenance department. This paper presents a method 
of improving fault detection in induction motors through 
current signature analysis using a Rough Sets based 
Classifier. 
 Normally, the number of information available to reach 
the proper diagnosis is large enough to complicate fast 
human analysis. This is not an easy task for the expert. It is 
even more complicate for a technician to deal with all 
available data, normally a huge number of measurements 
that must be manipulated and clustered in order to visualize 
the current state of the equipment. In this particular point, the 
use of Rough Sets helps the human operator to cope with all 
available information and cluster it in a reasonable and 
comprehensible way, which is normally done in ordinary 
Expert Systems. 

This paper presents an ongoing approach to fault detection 
and diagnosis that copes with the analysis performed by the 
classifier and tries to make a classification with two outputs. 
The first output is the failure mode and the second one is the 
operational mode in one of the three states, namely: normal, 
warning, and emergency. In the first state, all signals and all 
measurements are within the nominal rates. In the second 
state, all signals continue to be acceptable although some of 
the measurements may be above the nominal rates. For the 

emergency operational state, the signals are above the 
nominal rates and the maintenance is mandatory. The 
primary results obtained by the application of the 
methodology of Rough Sets give us the hope that this 
technique can be used as a powerful tool toward a robust 
classifier in fault diagnosis.  
 This paper is divided in three parts. The first one gives a 
concise description of the Motor Current Signature Analysis 
approach and the mechanical faults that have been used. The 
second part shows an example of laboratory tests. The third 
part presents the application of Rough Sets based classifier 
and the results obtained. 
 

II. OVERVIEW OF MOTOR CURRENT SIGNATURE 
ANALYSIS AND THE DETECTED FAULTS 

 
MCSA is a noninvasive technique which diagnosis 

problems in induction motors. It consists of utilizing the 
results of spectral analysis of the stator one-phase current 
signal. When a failure is present, the frequency spectrum of 
the line current becomes different from that of a non-faulted 
one. Such fault modulates the air-gap and produces rotating 
frequency harmonics in the self and mutual inductances of 
the machine. Since the flux linkages oscillate at only the 
electric supply frequency, these harmonic inductances result 
in stator current harmonic at rotating frequency sidebands of 
the line frequency [1]. 

The characteristic frequencies of failure are very well 
known and have been described by many authors. However, 
this paper section intends to introduce in a concise manner 
the general idea of the theory, and because of that, the 
characteristic frequencies of each studied mechanical fault 
will be presented. 
 
A. Rotor Asymmetry 
 

When a rotor asymmetry is present in an induction motor, 
the air-gap flux density is disturbed. This disturbance rotates 
at shaft speed, generating characteristic components in the 
frequency spectrum given by [2]: 
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Where: f is the supply frequency; s is the slip per unit; p is 
the number of poles; and k = 1,2 3, � 
 
B. Rotor unbalance 
 
 In the case of dynamic eccentricity that varies with the 
rotor position, what happens is an oscillation in the air-gap 
length, causing variations in the air-gap flux. This fact, in 
turn, affects the machine instantaneous inductance, 
producing stator current harmonics in [2]: 
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C. Air-gap eccentricity 
 
 There are two methods for the detection of air-gap 
eccentricity. The first one monitors the behavior of the 
sidebands present in the current spectrum near the slot 
frequency. The associate frequencies with this failure using 
this first method, are given by: 
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Where: R is the number of rotor bars; necc is the eccentricity 
order number; ns is the supply frequency harmonic rank; and 
k = 1, 2, 3,� 
 
 The great disadvantage of this method is the need for the 
constructive aspects of the machine. On the other hand, by 
using this method of monitoring, it is possible to separate 
broken bar effects from eccentricity effects. 
 The second method consists of monitoring the behavior of 
the sidebands around the fundamental frequency. These 
failure characteristic frequencies are given by: 
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 The great advantage of this second approach is that it is 
not necessary to know the rotor construction aspects to 
accomplish an evaluation of the health of the motor [3]. 
 
D. Broken Bars 
 
 The detection of broken bars through the stator current 
spectrum can be accomplished by observing two particular 
components around the fundamental component. 
 When broken bars are present, the current spectrum 
presents two components equally spaced of 2.f.s from the 
fundamental frequency. The left component (f -2fs) results 
from the failure. The right component results from the speed 
ripple [4]. 
 This way, the characteristic frequencies of broken bars are 
given by [5]: 
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E. Bearing damages 

The monitoring of bearing damages is very important in a 
predictive maintenance system since they are responsible for 
40% of the failures in induction machines [6]. 

There are several causes for bearing damages. Since this is 
not the objective of this work, the paper will present just the 
characteristic components of failure in the outer and inner 
races, and rolling elements. The formulations of these 
characteristic components depend on the bearing dimensions. 
Fig. 1 presents the dimensions involved in the frequency 
calculations: 
 

 
Fig 1: Bearing dimensions 

 
 The characteristic frequencies of failures in the rolling 
element, inner race and outer race are respectively given by 
[7, 8]: 
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 However, the characteristic race frequencies can be 
approximated for most bearings with between six and twelve 
balls by: 

rmir fnff ⋅⋅±= 6.0               (9) 

rmor fnff ⋅⋅±= 4.0               (10) 
 
Where: frm is the rotor speed in hertz; n is the number of 
rolling elements; and m = 1, 2, 3 � 
 

III. Laboratory Tests 
 

This work investigates some mechanical faults such as air-
gap eccentricity, load unbalances, broken bars and bearing 
damage. Laboratory tests have confirmed the technique 
efficiency in monitoring the status of three-phase-induction 
motors. One of the tests conducted are described below in 
order to provide a better understanding of the approach. 
 
A. Load Unbalance 
 

 
 



 

 A load unbalance was imposed to the motor by installing a 
metal disc with three holes in the shaft. Three levels of 
failure severity were created by adding a small mass of 80 
grams in each hole placed 70 mm (d1), 90 mm (d2) and 110 
mm (d3) from the shaft respectively. Fig. 2 illustrates the 
process. 
 

 
Fig. 2: Laboratory assembly to simulate load unbalance 

 
The frequency spectra were obtained and the tendency 

curve was plotted. Fig. 3a presents the frequency spectrum 
of normal condition and Fig. 3b presents the frequency 
spectrum of level-three severity. Fig. 4 presents the tendency 
curve. 
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Fig. 3a: Spectrum of normal condition 
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Fig 3b: Spectrum of level-three severity 

 

 
Fig. 4: Tendency curve 

 

 The severity levels are: 1) non fault condition; 2) motor 
plus unbalanced disc without mass; 3) mass placed in d1; 
mass placed in d2; mass placed in d3. 
 
B. Bearing damage 
 

In order to analyze the effects of bearing damage, a hole 
was drilled through the outer race as Fig. 5 illustrates. 
According to the equation (10), presented in section II, the 
first three pairs of characteristic frequencies were 43.3 and 
162.7 Hz, 146.3 (component that responded to the failure) 
and 265.7 Hz, 249.3 and 368.7 Hz. Fig 6 presents the 
obtained spectra with zoom in the area where a characteristic 
component appeared. 
 

 
Fig. 5: Bearing with a hole in the outer race 
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Fig. 6a: Spectrum of normal condition 
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Fig. 6b: Stator current spectrum of a motor with a hole  in the outer race of 

the shaft-end bearing 
 
 The figures show that the MCSA approach responded very 
well to the failure severity. Other tests also had the same 
good response and this push the research toward a 
development of a robust and reliable classifier to fault 
diagnosis. 
 

IV. Rough Sets Based Classifier 
 
A. Overview of Rough Set Theory 
 

The objective of this paper section is to present the 
fundamental concepts of the rough set theory. The main idea 

 
 



 

is to transform a set of examples in a set of rules that 
represents the operation state of an induction motor. 
 
1. Information System 
 

An information system can be defined as a 4-tuple 
K=(U,R,V,ρ), where U is a finite set of objects (search 
space), R is a finite set of attributes (state of each signal, 
currents and vibration), V is the domain of each attribute of 
R, and ρ is a total function (named information function) that 
defines the following application: ρ , i.e., the 
examples. 

:U × →R V

The concept of information system is not exclusive of the 
rough set theory and has been extensively used in 
information theory. 
 
2. Approximation Sets 
 

One of the main contributions of Rough Set Theory is to 
automatically transform data into knowledge [9]. This theory 
uses lower and upper approximation of a set, as shown in 
Fig. 7 [10]. According to this figure we can observe five 
regions (or sets) of interest: R X  and RX , and POS , 

 and . Each one of these is defined 
below. 

XR ( )
BN XR ( ) NEG XR ( )

Let a set X⊆U, R be an equivalence relation, and 
K=(U,{R}) be a knowledge base . Two subsets can be 
associated to these: 
    a) R-lower: RX  = U {Y ∈ U/R : Y ⊆ X} 
    b) R-upper: R X  = U {Y ∈ U/R : Y ∩ X ≠ Ø} 

 
These definitions mean that the elements that belong to the 

RX  set can be, with certainty, classified as elements of X; 
while the elements belonging to the R X  set can be, only 
possibly, classified as elements of X. 

In the same way, POS ,  and  
are defined as [11]: 

XR ( ) BN XR ( ) NEG XR ( )

    c)  = POS XR ( ) RX  ⇒ certainly member of X 
    d) NEG  = U - XR ( ) R X  ⇒ certainly non-member of X 
    e) BN  = XR ( ) R X  - RX  ⇒ possibly member of X 
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 ���Fig. 7: Definition of R-approximation sets and R-regions. 
 

Based on the above definitions, the concept of accuracy 
measure (α ) can now be presented, which numerically 
characterizes the inaccuracy of the knowledge, using the 
cardinality of 

R X( )

R X  and RX  sets, i.e., 

α R X card RX
card RX

( ) =
  
  

              (11) 

 
where α  is defined in the interval [0,1]. R X( )
 

When α =1, the set X is named R-definable, and the 
 region is empty. In this case, the rough set theory 

is reduced to classical Cantor set theory. 

R X( )
)BN XR (

3. Reduct and Core of Knowledge 
 

The concepts of reduct and core are important in the 
knowledge base reduction. Let R be a family of equivalence 
relations. The reduct of R, RED(R), is defined as a reduced 
set of relations that conserves the same inductive 
classification of set R. The core of R, CORE(R), is the set of 
relations that appears in all reduct of R, i.e., the set of all 
indispensable relations to characterize the relation R. 
 
B. Knowledge Base Reduction 
 

One of the most common approaches to get knowledge 
from an expert is by examples. The idea behind the 
knowledge base reduction is a simplification of this set of 
examples. This can be obtained with the following 
procedure: 
 
     a) Calculate the core of the problem 
     b) Eliminate (or substitute) a variable using another one; 
and 
     c) Redefine the problem using new basic categories. 
 

The algorithm that provides the reduction of conditions 
has been proposed in [11,12] and can be represented by the 
following steps: 
 

Step 1: Eliminate the dispensable attributes. 
Step 2: Compute the core of each example. 
Step 3: Compose a table with reduct value. 
Step 4: Merge possible examples. 

 
C. Algorithm Extension 
 

A more sophisticated system for fault diagnosis can be 
developed redefining the band for the attributes related to 
each acquired values of analog variables according to a 
certain metric, creating a new and more flexible database. By 
applying the algorithm described before in this modified 
database, it is possible to obtain a more detailed and specific 
classification of the operating point of the Induction Motor 
under study.  

Before the presentation of the algorithm, we need to 
remember two major concepts in Rough Set Theory: reduct 
and core. These concepts are important in the knowledge 
base reduction. 

Let R be a family of equivalence relations. The reduct of 
R, RED(R), is defined as a reduced set of relations that 
conserves the same inductive classification of set R. The 

 
 



 

core of R, CORE(R), is the set of relations that appears in all 
reduct of R, i.e., the set of all indispensable relations to 
characterize the relation R. 

The algorithm that provides the reduction of conditions 
has been proposed in [11, 12], and can be represented by the 
following steps: 

  
Previous Steps: 
 Transform continuous values in ranges. 
 Eliminate identical attributes. 
 Eliminate identical examples. 
 

Step 1: Eliminate dispensable attributes. 
Step 2: Compute the core of the decision table. 
Step 3: Compose a table with reduct value. 
Step 4: Merge possible examples. 
Final Step: Compose the final set of rules. 
 
D. Description of the problem 
 

The idea is to transform a set of examples in a set of rules 
that specifies the kind of failure (Broken bars, bearing 
damage, air-gap eccentricity) and represents the operational 
state of an induction motor. For the sake of explanation, 
some assumptions and reductions are made. 
 The operational state of the induction motor and the 
failure mode, shown in Fig. 8, depend on the information 
obtained from the data acquired from one phase of the stator 
current (shaft speed, characteristic frequencies, etc), 
parameters related to motor features (rated power, current, 
voltage and speed) and other attributes generated by other 
digital signal processing techniques. These attributes are 
used in a decision table in order to provide a more suitable 
way of accomplishing the Rough Sets Algorithm. 
 

 
Fig. 8: Operational state of an Induction motor and changing of operational 

point 
 

Table 1 presents a partial set of examples relating the 
different attributes with their values categorized in ranges. 
 

Table 1: Set of examples 
A B C D E F G H O1 O2

1 N N N S UR UL C1 N N N
2 N N N S UR UL C1 C N N 
3 N N N S UR UL C1 G N N 
4 N N N S UR UL C1 N N N 
5 N N N S UR UL C1 C N N 
6 N N N S UR UL C1 G N N 
7 N N N S UR UL C2 N N N 
8 N N N S UR UL C2 C N N 

9 N N N S UR UL C2 G N N 
10 N N N S UR UL C2 N N N 
11 N N N S UR UL C2 C N N 
12 N N N S UR UL C2 G N N 
13 N N N R R R C1 N N N 
14 N N N R R R C1 C N N 
15 N N N R R R C1 G N N 
16 N N N R R R C1 N N N 
17 N N N R R R C1 C N N 
18 N N N R R R C1 G N N 
19 N N N R R R C2 N N N 
20 N N N R R R C2 C N N 
21 N N N R R R C2 G N N 
22 N N N R R R C2 N N N 
23 N N N R R R C2 C N N 
24 N N N R R R C2 G N N 
25 W N N S UR UL C1 N Ecc W 
26 W N N S UR UL C2 N Ecc W 
27 W N N R R R C1 N Ecc W 
28 W N N R R R C2 N Ecc W 
29 W N N F OR OL C1 N Ecc W 
30 W N N F OR OL C2 N Ecc W 
31 E N W S UR UL C1 N Ecc E 
32 E N W S UR UL C2 N Ecc E 
33 E N W R R R C1 N Ecc E 
34 E N W R R R C2 N Ecc E 
35 E N W F OR OL C1 N Ecc E 
36 E N W F OR OL C2 N Ecc E 
37 N W N S UR UL C1 N B W 
38 N W N S UR UL C2 N B W 
39 N W N R R R C1 N B W 
40 N W N R R R C2 N B W 
41 N W N F OR OL C1 N B W 
42 N W N F OR OL C2 N B W 
43 W E N S UR UL C1 N B E 
44 W E N S UR UL C2 N B E 
45 W E N R R R C1 N B E 
46 W E N R R R C2 N B E 
47 W E N F OR OL C1 N B E 
48 W E N F OR OL C2 N B E 
49 N N W S UR UL C1 N BB W 
50 N N W S UR UL C2 N N N 
51 N N W R R R C1 N BB W 
52 N N W R R R C2 N N N 
53 N N W F OR OL C1 N BB W 
54 N N W F OR OL C2 N N N 
55 W N E S UR UL C1 N BB E 
56 W N E S UR UL C2 N BB E 
57 W N E R R R C1 N BB E 
58 W N E R R R C2 N BB E 
59 W N E F OR OL C1 N BB E 
60 W N E F OR OL C2 N BB E 

 
 The condition attributes are: 
 
• Specific current components: 
A � Overall level of those components related to 

eccentricity; 
B � Overall level of those components related to bearing 

damage; 
C � Overall level of those components related to broken 

bars. 
A, B and C are classified in one of the three ranges, namely: 

Normal (N), Warning (W) or Emergency (E). 
 

 
 



 

• Motor features: 
D � slip; 
E � fundamental current amplitude; 
F � input power; 
 D is classified as fast (F), rated (R) or slow (S). E is 
classified as underrated (UR), rated (R) or Overrated (O). F, 
in turns, is classified as underload (UL), rated (R) or 
Overload (OL). D, E and F are per unit values related to 
rated values. 

 
• General Attributes: 
G � related to kind of load; 
H - related to load and environment conditions. 

 G is classified as C1 (constant load) or C2 (pulsating 
load). H is classified as good (G), normal (N) or critical (C). 
 

The decisions attributes are: 
 

O1 - Failure mode (air-gap eccentricity (Ecc), bearing 
damage (B) or broken bars (BB)); 

O2 - Failure severity (Normal (N), Warning (W) or 
Emergency (E)). 
 

The set of examples of table 1, when finally reduced, 
generates the following reduced set presented in table 2: 
 

Table 2: Reduced Set 
A B C G O1 O2

1 N N N - N N 
2 N N - C2 N N 
3 W N N - Ecc W 
4 E - - - Ecc E 
5 - W - - B W 
6 - E - - B E 
7 N - W C1 BB W 
8 N - W C2 N N 
9 - - E - BB E 

 
The indication �-�, in some cells, means that the attribute 

is unnecessary for the classification. 
 
Final Step: according to the table 2, one can express the 
knowledge present in table 1 by the following set of rules: 
 
If (A is N and B is N and C is N) or (A is N and B is N and 
G is C2) or (A is N and C is W and G is C2) then (O1 is N 
and O2 is N) 
If (A is W and B is N and C is N) then (O1 is Ecc and O2 
is W) 
If (A is E) then (O1 is Ecc and O2 is E) 
If (B is W) then (O1 is B and O2 is W) 
If (B is E) then (O1 is B and O2 is E) 
If (A is N and C is W and G is C1) then (O1 is BB and O2 
is W) 
If (C is E) then (O1 is BB and O2 is E) 
 

V. CONCLUSION 
 

This paper presents the results of a systematic approach to 
detect superfluous input variables and unnecessary 

conditions in a set of examples in order to classify specific 
problems of induction motors. The size of the knowledge 
base represents an important challenge for reliable diagnosis 
in Predictive Maintenance. In this case, a systematic and 
rational reduction of a knowledge base, by keeping only the 
core of the knowledge is desirable. 

The method described in this paper to reduce the 
knowledge base is based on Rough Set theory, and it tries to 
create an automatic approach to transform data into 
knowledge. The methodology developed is applied to 
induction motor predictive maintenance. Although the 
described technique is still under development, the obtained 
results are encouraging.  

This way, in a first evaluation of the technique applied to 
predictive maintenance in induction motor, the researchers 
can say that rough sets theory is a very promising tool to 
generate the rules which will diagnose the status of the 
motor. 
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